If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2t^2+t-63=0
a = 2; b = 1; c = -63;
Δ = b2-4ac
Δ = 12-4·2·(-63)
Δ = 505
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{505}}{2*2}=\frac{-1-\sqrt{505}}{4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{505}}{2*2}=\frac{-1+\sqrt{505}}{4} $
| A=P(1+i) | | 3^x+2=14.5 | | -3p^2+10p+3=0 | | 9x²=96x | | 5x+8=-4x-9 | | (x+9)(x-2)-(x-5)(x+5)=-14 | | -13+1/4h=7 | | 10k^2-12k-10=0 | | 9(4a-8)=12(3a+8) | | 9(4a-8)=12(3a=8) | | (-v)4-10=-8 | | 6r-2r+5=45 | | 3v-5=-27 | | v÷4-10=-8 | | 200-3/4a=a | | 18=-3x-3 | | 16-3v=-2 | | (x-4)^2+3=23 | | 3(2x-7=15 | | 3(x-7)-6=18x-72 | | 3c+5c+3=35 | | 4b+-8=4 | | -3(3+2)=4(2t+6) | | -3(3+2)=4)2t+6) | | 4-(-r)=7 | | -3+4x=6x-9 | | 11/6=n+7/9 | | -15+2g=3 | | (2x+3÷5)=(x-4÷2) | | -6(-10x-8)=60x | | -6(-10x-8)=60x+ | | -12(2.5z-2)=2z+8 |